Tractography-Driven Groupwise Multi-scale Parcellation of the Cortex
نویسندگان
چکیده
The analysis of the connectome of the human brain provides key insight into the brain's organisation and function, and its evolution in disease or ageing. Parcellation of the cortical surface into distinct regions in terms of structural connectivity is an essential step that can enable such analysis. The estimation of a stable connectome across a population of healthy subjects requires the estimation of a groupwise parcellation that can capture the variability of the connectome across the population. This problem has solely been addressed in the literature via averaging of connectivity profiles or finding correspondences between individual parcellations a posteriori. In this paper, we propose a groupwise parcellation method of the cortex based on diffusion MR images (dMRI). We borrow ideas from the area of cosegmentation in computer vision and directly estimate a consistent parcellation across different subjects and scales through a spectral clustering approach. The parcellation is driven by the tractography connectivity profiles, and information between subjects and across scales. Promising qualitative and quantitative results on a sizeable data-set demonstrate the strong potential of the method.
منابع مشابه
Groupwise Structural Parcellation of the Cortex: A Sound Approach Based on Logistic Models
Current theories hold that brain function is highly related to long-range physical connections through axonal bundles, namely extrinsic connectivity. However, obtaining a groupwise cortical parcellation based on extrinsic connectivity remains challenging. Current parcellation methods are computationally expensive; need tuning of several parameters or rely on ad-hoc constraints. Furthermore, non...
متن کاملConnectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography
The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation...
متن کاملHuman brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex
The macro-connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition o...
متن کاملAutomated white matter fiber tract identification in patients with brain tumors
We propose a method for the automated identification of key white matter fiber tracts for neurosurgical planning, and we apply the method in a retrospective study of 18 consecutive neurosurgical patients with brain tumors. Our method is designed to be relatively robust to challenges in neurosurgical tractography, which include peritumoral edema, displacement, and mass effect caused by mass lesi...
متن کاملAnatomical and functional parcellation of the human lateral premotor cortex
The lateral premotor cortex (PM) of the macaque monkey is an anatomically multifaceted area, which serves multiple sensorimotor and cognitive functions. While evidence for the functional organization of human premotor cortex accumulates, much less is known about the underlying anatomical properties of this brain region. We used diffusion tractography and functional magnetic resonance imaging (f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 24 شماره
صفحات -
تاریخ انتشار 2015